
In the decades past, developers faced many errors when porting applications created for a specific computing
environment. Configuration differences such as versions of compilers, loaders, runtime libraries, middleware and
operating system in new environments created incompatibility and unreliability, and led to undesired increases in project
effort, cost and timelines.

Containers provide an elegant solution to this problem. Each container leverages a shared operating system kernel
and encapsulates everything needed to run an application (application code, dependencies, environment variables,
application runtimes, libraries, system tools, etc.,) in an isolated and executable unit. Differences in operating system
distributions and underlying infrastructure configurations are thus abstracted away, allowing application programs to run
correctly and identically even when deployed to different environments.

How we got here
Containerization originated in 2001 as a project allowing several general-purpose Linux servers to run on a single box
with autonomy and security. Subsequent projects at IBM, Red Hat and Docker moved this technology forward over the
years. In 2014, Google launched its container orchestration platform Kubernetes (K8s) and declared that it started over
2 billion containers on a weekly basis. In 2020, the Cloud Native Container Foundation released data that indicated an
overwhelming preference for Kubernetes among companies that used containers in production.

Many organizations today decouple their complex monolithic applications into modular, manageable microservices
packaged in containers that can be linked together. Container orchestrators such as Kubernetes further automate
installation, deployment, scaling and management of containerized application workloads on clusters, perform logging,
debugging, version updates and more.

How it works
Containers in Kubernetes, the most widespread container orchestrator, are implemented using Linux kernel features
called namespaces and cgroups (control groups). Namespaces limit what system resources (CPU, memory, disk I/O,
network traffic, etc.,) a containerized process or a set of processes can see. Cgroups limit the system resources that a
containerized process or a set of processes can use. Together, they enable strong isolation, preventing containers from
gaining control over each other’s resources.

Ready…Set…Start Your Containers
61% of container technology adopters expect more than 50% of their existing
and new applications to be packaged on containers over the next two years.

Author
Siva Sreeraman VP,
CTO and Modernization Tribe Leader

Containers are grouped into deployable computing units called pods, which contain shared network and storage
resources and specifications on how to run the containers. Pods run on nodes – physical or virtual machines containing
a set of CPU and RAM resources. Nodes are managed by the container orchestration layer and pool together into more
powerful machines called clusters. Clusters distribute work among individual nodes as needed to execute programs.
If any nodes are attached or removed, the cluster manages this, and it remains transparent to the program.

Advantages
Containers appeal to the software development community because of the agility, uniformity and portability they provide
in creating and deploying applications and their consistent performance of code execution irrespective of the run time
environment – a ‘write once, run anywhere’ approach across different infrastructures, on-premise or in the cloud.
Container images can be quickly rolled back in case of any issues observed. They can be rapidly spun up,
adding business functionality and scalability on demand, and torn down, reducing resource usage and
infrastructure costs.

Since containers do not need to run a full operating
system and share the host machine’s operating system
kernel with each other, they are lightweight and do
not have the same resource utilization needs as virtual
machines do. Containers are faster to start up, drive
higher server efficiencies and reduce server and
licensing costs.

Containers allow developers to focus on business
functionality and not worry about the underlying
configurations of applications. A consistent and short
deployment process enables faster delivery of new
applications. 75% of companies using containers
achieved a moderate to significant increase in
application delivery speed.

A great benefit of isolating applications into containers is the inherent security provided. As images are the building
blocks of containers, maliciously introduced code as well as unnecessary components can be prevented from entering
containers by using trusted image registries, enhanced access control methods and strict policies applied to both
accounts and operations. Whenever changes are made to container configurations, or containers started, auditability
must be implemented.

Challenges
Though containers solve a lot of security problems compared to traditional virtualization methods, they also introduce
new security challenges. As the Kubernetes cluster attack surface vector area is so large and increasing exponentially
– there are layers upon layers of images that span thousands of machines and services – this has provided many
opportunities for cybercriminals to launch coordinated attacks on Kubernetes to access company networks by taking
advantage of any misconfigurations.

Recent attacks have introduced cryptojacking, wherein an organization’s vast compute resources on the cloud are
unsuspectingly diverted towards mining cryptocurrency. As Kubernetes manages other machines and networks,
enterprises should continuously strengthen their security postures and take proactive measures to defend themselves.

Though container cluster managers such as Docker Swarm and Apache Mesos have enabled developers to build, ship
and schedule multi-container applications, and access, share and consume container pools through APIs, container
scaling is still evolving. Container orchestration tools and container cluster managers have not fully integrated with each
other. Cluster managers today are not able to provide security at enterprise-class levels and a common set of standards
is lacking.

Containerization best practices
Current best practices for container operations include:

	Avoid privileged containers, which could allow attackers to bypass container security features and gain access to all
the devices of the host machine

	Statelessness, i.e., storing any state/persistent data externally and thereby permitting graceful shutdown of containers
and no data losses

	Keep containers immutable, i.e., no modifications over their life to apply any application updates, security patches or
configuration changes, thus allowing for safe and identical deployments in every environment

	Securely manage passwords, secrets and roles on a per-pod basis and frequently rolling credentials

	Do not use any backdoors or gateways that can provide ingress mechanisms to attackers

	 Implement quotas so that resources are not exhausted and any outage is restricted to the defined constraints

	Update clusters to use recent major versions of Kubernetes and applying security patches consistently

	Use cloud-managed Kubernetes services where possible to lower the degree of difficulty in self-managing
on-premises Kubernetes installations

In conclusion
Despite challenges, containers present many benefits and offer enterprises an attractive choice for software application
development. 61% of container technology adopters expect more than 50% of their existing and new applications to be
packaged on containers over the next two years. By 2026, Gartner estimates that 90% of global organizations will be
running containerized applications in production.

The usage of managed public cloud Container-as-a-Service (CaaS) such as Amazon Web Services (AWS),
Elastic Kubernetes Service (EKS), Microsoft Azure Kubernetes Service (AKS) and Google Kubernetes Engine (GKE)
is widespread among enterprises today. Container-based Platform-as-a-Service (PaaS) offerings such as
Google Cloud Anthos, Red Hat OpenShift, VMware Tanzu Application Service and SUSE Rancher are also prevalent.
Lightweight Kubernetes distributions (with half the memory needed for K8s and smaller binary sizes) like SUSE Rancher
K3s and Mirantis K0s can be seen in Edge, Internet of Things and Reduced Instruction Set Computing applications.

While the introduction of containers may add some vulnerabilities, the speed, efficiency and savings they provide in
return are well worth the easily managed risk. Thanks to these considerable benefits, container technology will continue
to be a foundational element of the enterprise software technology stack over the coming years. Companies should
continue to invest in and utilize containerization in their digital transformation journeys.

www.mphasis.com

VA
S

29
/0

6/
22

 U
S

LE
TT

ER
 B

AS
IL

 7
45

3UK
Mphasis UK Limited
1 Ropemaker Street, London
EC2Y 9HT, United Kingdom
T : +44 020 7153 1327

INDIA
Bagmane World Technology Center
Marathahalli Ring Road
Doddanakundhi Village
Mahadevapura
Bangalore 560 048, India
Tel.: +91 80 3352 5000

For more information, contact: marketinginfo.m@mphasis.com

Copyright © Mphasis Corporation. All rights reserved.

USA
460 Park Avenue South
Suite #1101
New York, NY 10016, USA
Tel.: +1 646 424 5145

About Mphasis
Mphasis’ purpose is to be the “Driver in Driverless Car” for Global Enterprises by applying next-generation design, architecture and
engineering services, to deliver scalable and sustainable software and technology solutions. Customer centricity is foundational to Mphasis,
and is reflected in the Mphasis’ Front2Back™ Transformation approach. Front2Back™ uses the exponential power of cloud and cognitive to provide
hyper-personalized (C = X2C2

TM = 1) digital experience to clients and their end customers. Mphasis’ Service Transformation approach helps ‘shrink the
core’ through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay ahead in a changing
world. Mphasis’ core reference architectures and tools, speed and innovation with domain expertise and specialization, combined with an integrated
sustainability and purpose-led approach across its operations and solutions are key to building strong relationships with marquee clients.
Click here to know more. (BSE: 526299; NSE: MPHASIS)

